

CMSC 201 – Computer Science I for Majors Page 1

CMSC 201 Spring 2018
Lab 10 – For Loops

Assignment: Lab 10 – For Loops
Due Date: During discussion, April 9th through April 12th
Value: 10 points (8 points during lab, 2 points for Pre Lab quiz)

This week’s lab will give you practice with debugging more complex problems,
such as logic errors, that you may start encountering.

(Having concepts explained in a new and different way can often lead to a
better understanding, so make sure to pay attention as your TA explains.)

CMSC 201 – Computer Science I for Majors Page 2

Part 1A: Review – For Loops

We can use for loops to perform two different actions: iterating over a list, or

performing an action a certain number of times. We will see both below.
Iterating over a list means moving through a list, one element at a time.

For example:

fruitList = ["kiwi", "banana", "peach"]

for fruit in range(len(fruitList)):

 print("I ate a", fruitList[fruit])

Output:

I ate a kiwi

I ate a banana

I ate a peach

As another example:

greetings = ["Hello", "Hola", "Ciao", "Salut"]

for i in range(len(greetings)):

 greetings[i] = "Goodbye"

print(greetings)

Output:

['Goodbye', 'Goodbye', 'Goodbye', 'Goodbye']

We can also run a for loop a specific number of times, without making use

of a list or its length. For example:
numToRun = 5

for n in range(numToRun):

 print("Executing for time #", n)

Output:

Executing for time # 0

Executing for time # 1

Executing for time # 2

Executing for time # 3

Executing for time # 4

CMSC 201 – Computer Science I for Majors Page 3

You can either define the number of times to run prior to using it in the for

loop (like we did above with numToRun), with an expression in its place (like

we did with len(greetings)), or with just a number (as we will see below).

The loop variable in a for loop behaves in a specific way. The loop variable

will first be set to the first value generated by range (often 0). On the next
iteration of the loop, it will change to the next value. Often 1, 2, 3, etc. – all the
way up to the number specified by range(). (Remember that range()

goes up to but not including the last number.

For example:

for i in range(4):

 print("The value of i is:", i)

Output:

The value of i is: 0

The value of i is: 1

The value of i is: 2

The value of i is: 3

You can also be much more specific in choosing the exact range that your
for loop variable will iterate over.

For example:

for number in range(5, 8):

 print("This will execute 3 times:", number)

Output:

This will execute 3 times: 5

This will execute 3 times: 6

This will execute 3 times: 7

Notice how the previous loop will only execute 3 times, starting at the number 5
and ending at the number 7. Specifying the starting number for the
range() function is optional! If you don’t include it, then 0 is chosen as the

default start for the range() function. You can also optionally specify the

increment that the range() function increases by for each iteration.

CMSC 201 – Computer Science I for Majors Page 4

For example:

for num in range(1, 10, 2):

 print("The value increases by 2:", num)

Output:

The value of num is: 1

The value of num is: 3

The value of num is: 5

The value of num is: 7

The value of num is: 9

See how the above loop only executes 5 times? This time, the loop variable
number will increment by 2 each iteration, instead of 1. The third number,

which specifies the increment of the range is also optional! If you don’t
include it, an increment of 1 is chosen by default. For the range() function,

the only hard requirement is a number to end the range on.

You can also use a negative increment in your range() function. This can

be used to count down, or to iterate backwards through a list. If you use this,
you need to make sure that your starting number is higher than your
ending number, and make sure that the end of the range you specify is one
less than where you actually want to stop.

For example:

for i in range(5, -1, -1):

 print("The value of i is:", i)

Output:

The value of i is 5

The value of i is 4

The value of i is 3

The value of i is 2

The value of i is 1

The value of i is 0

CMSC 201 – Computer Science I for Majors Page 5

Part 2: Exercise

In this lab, you’ll be creating one file, factors.py. You’ll also be putting your

skills at creating algorithms from scratch to the test, so think carefully about
what your code needs to do and why.

You are also REQUIRED TO USE FOR LOOPS for this lab.

The program you’ll be coding asks the user for a number (an integer), and then
prints out all of the factors of that number. For example, if given 6, the factors
are 1, 2, 3, and 6. The factors of 8 are 1, 2, 4, and 8. (See the sample output
for more examples.)

Your program must adhere to the following requirements, but the details are
up to you. (It is your decision if you want to create a function, or simply code
everything up in main().)

 Must verify that the number entered is higher than zero

 Must store the factors of the number in a list as they are found

 Must iterate over that list to print out the final response

 (HINT: You will need at least two for loops to complete this lab.)

Tasks

 Create a factors.py file

 Carefully consider how to find a number’s factors
 Write the code to determine the factors of the number

 (A separate function or within main() are both acceptable)

 Write the code to iterate over the list of factors
 Show your work to your TA

CMSC 201 – Computer Science I for Majors Page 6

Part 3A: Creating Your File

First, create the lab10 folder using the mkdir command -- the folder needs

to be inside your Labs folder as well.

Next, create a Python file called factors.py using the “touch” command in

GL.
The “touch” command creates a new blank file, but doesn’t open it.

Once a file has been “touched”, you can open and edit it using emacs.
 touch factors.py

 emacs factors.py

The first thing you should do with any new Python file is create and fill out the
comment header block at the top of your file. Here is a template:

File: FILENAME.py

Author: YOUR NAME

Date: TODAY'S DATE

Section: YOUR SECTION NUMBER

E-mail: USERNAME@umbc.edu

Description: YOUR DESCRIPTION GOES HERE AND HERE

YOUR DESCRIPTION CONTINUED SOME MORE

CMSC 201 – Computer Science I for Majors Page 7

Part 3B: Sample Output

Here is some sample output, with the user input in blue.
(Yours does not have to match this word for word, but it should be similar.)

bash-4.1$ python factors.py

Enter a (positive) number to find the factors of: -7

Sorry, enter a number greater than zero: 0

Sorry, enter a number greater than zero: -9

Sorry, enter a number greater than zero: 6

1 is a factor of 6

2 is a factor of 6

3 is a factor of 6

6 is a factor of 6

bash-4.1$ python factors.py

Enter a (positive) number to find the factors of: 30

1 is a factor of 30

2 is a factor of 30

3 is a factor of 30

5 is a factor of 30

6 is a factor of 30

10 is a factor of 30

15 is a factor of 30

30 is a factor of 30

Enter a (positive) number to find the factors of: 123

1 is a factor of 123

3 is a factor of 123

41 is a factor of 123

123 is a factor of 123

bash-4.1$ python factors.py

Enter a (positive) number to find the factors of: 137

1 is a factor of 137

137 is a factor of 137

bash-4.1$ python factors.py

Enter a (positive) number to find the factors of: 1

1 is a factor of 1

CMSC 201 – Computer Science I for Majors Page 8

Part 4: Completing Your Lab

Since this is an in-person lab, you do not need to use the submit command to

complete your lab. Instead, raise your hand to let your TA know that you are
finished.

They will come over and check your work – they may ask you to run your
program for them, and they may also want to see your code. Once they’ve
checked your work, they’ll give you a score for the lab, and you are free to
leave.

Tasks

 Create a factors.py file

 Carefully consider how to find a number’s factors
 Write the code to determine the factors of the number

 (A separate function or within main() are both acceptable)

 Write the code to iterate over the list of factors
 Show your work to your TA

IMPORTANT: If you leave the lab without the TA checking
your work, you will receive a zero for this week’s lab. Make
sure you have been given a grade before you leave!

